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Electron density separations in nonideal plasmas: Structure of Thomas-Fermi-like bound states
and the Mott transition
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Starting from a general free energy functional, the chemical picture for nonideal plasmas arises from a
certain separation of the electron density. Defining a bound state and its electrostatically screening plasma
environment as a subsystem, a simple theory for plasma-correspondent bound state structure can be formu-
lated. This provides the possibility to derive adjustable parameters for the interactions in the chemical picture.
The Mott transition corresponds to the violation of the normalization condition due to plasma influences.

PACS numbdis): 52.25-b

I. INTRODUCTION: THE CHEMICAL PICTURE respectively, where the origin has been fixed without loss of
OF PLASMAS generality on an arbitrary nucleus with the temperafiaes
parametefa.u):
The equilibrium properties of Coulombic matter have
been studied since the early days of statistical physics. De-  F[ny(r),n;(r);T]=F"9ne(r)]+F'9n;(r)]
pending on the position in the density-temperature plane, L
Coulomb matter—or plasmas, in the vocabulary of this f B ,
work—presents itself in vastly differing shapes; examples " odgweeﬂl”ﬂ/‘al>§
are as far adrift as stellar interiors, electron-hole plasmas in 7
semiconductors, the Wigner crystal, classical electrolytes, f P r7n(r)— _
and so forth. Naturally, emphases and toolkits of theoretical i drr [Zndr)=ne(r)] .
approaches differ accordingly: dilute systems are success-
fully described by the assumption that electrons and ions ar€he charging expression via the coupling constauef the
grouped into bound states which themselves form the mointeraction potentiaV holds for both classical and quantum
lecular chaos of a gas. The ionization processes in this gagtatistics|11]. With the choice of origin, the normalizations
can be thought of as chemical reactions between free elec-
trons and different ions. Hence this approach is usually re-
ferred to as the ‘“chemical picture(see, e.g.[1]). Dense J dini(r)=N;—1,
systems, on the other hand, connect to solid state physics @)
with ionic crystalline order(or the remnants of it as, for
instance, in liquid metajsand itinerant electrong2,3]. Non- f ding(r)=Ng=ZN,
ideal plasmas, which are characterized by notable corrections
to the ideal kinetic energy due to the Coulomb interaction,
are located in the region of the density-temperature planéllow. Consequently, the electron density(r) balances the
that connects to both limits of theory buildup. A consistentionic charge in the plasmaecond line of Eq(1)] as well as
plasma theory should, therefore, contain a principal bridgehe nuclear field of the charge at the origihird line). In the
from molecular chaos to long-range order. Despite a numbethemical pictureng(r) is assumed to separate generating
of attempts(for instance, a hydrogen theofy]), such a bound state§the one at the origin with density,(r) and
theory is, rather unsurprisingly, in general still elusive. ltsthose in the plasma labeled by their net chazhand itiner-
general theme, however, has to be the consistency of struant plasma electrons:
tural and energetical description. This paper will present a
route toward improved consistency starting from the chemi-
cal picture employing the spirit of density functional theory Ne(r) =Nz (1) + 2, (Z—2Z)n,(r)+n*(r),
(DFT). Since its foundation in 1964 and 1965-7], DFT z
has been applied successfully to a wide variety of Coulomb
matter problemgsee anthologie$8—10]). Since both the Nyn(r—)—0, 3)
success and the theoretical beauty of DFT lie in its self-
consistency(a charge density generates a potential that in
turn determines the distribution of the chargeié seems
tailor-made for addressing the problem sketched above. In a
system ofN; pointlike, Z-fold charged nuclei antN.=ZN, Inevitably, a free energy reformulated in this separation con-
electrons the Helmholtz free energy can be formulated as tins a mixing term due to the interaction of the bound state
functional of ionic and electron densities,(r) and ng(r), with the surrounding plasma:

n*(r—o)—p* =const.
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Flnzy,n*, A, T1=F9n,n;TI+F9n* A, T] As a third comment, it should be noted that the arbitrary
. , separation Eq. (3)] potentially contains the onset of long-

+FE™[nzy,n* A, T1+F™n* A, T] range order if a suitable structure theory for the heavy par-

7 ticles is employed in the formulation of the plasma free en-
—f dr—nzn(r) ergy (see, e.g.[2,3]). In the framework of this paper,

r however, the consistency notion shall be restricted to the

(P Nan(r') bound state and its immediate environment. This is for Bolt-
+ %f dFd?’%. (4)  zmann statistics iF[n* ,i,;T] in leading order given by

|F=r"] electrostatic screening and will be shown below to repro-

duce, under certain approximations, the famous theory of

e . . d .
Otherwise, ideal and interaction contributions can be asPebye and Hokel (DH) [23]. GeneralizingF*[n*] to its
signed to the bound stat the plasma. Equatiotd) sug- full Fermi function expression presents an immediate means
gests already the shape of the theory as it will be developetf €xtend the concept of electrostatic screening beyond DH
below; assuming =0 for the bound electrong“[n,y;T] (an example is the well-known Thomas-Fermi screening in a
plus the last two terms in E@4) present a bound state prob- fully degenerate electron g430,1)). .
lem that can be tackled by Thomas-Fermi-like methods. Via__Finally, lh‘f conundrum presented by the mixing term
the mixing termF™, this bound state is coupled to the £ LNzn,N*.Mz;T] has to be addressed. With respect to the
plasma, which itself is in a “chemical’(i.e., ionization ~ chemical description of the plasma, two choices can be
equilibrium determined b§™[n* A, : T]. The adjustment of madg: e_|ther the plasma effects are regarded_as _modlfymg
the bound state to the surrounding plasma presents anin€ binding energy of the bound state, thus altering its sum of
albeit simple—step toward improved consistency of strucStates, or this is left at its ideal value and the difference is
ture and energy in the sense addressed above. Nonideal bsumed into the nonl_deallty contrlbutlon_s to the plasma
corrections to the ionization energy are complemented by ai{'éfmodynamical potentials. For hydrogenlike systems both
according change of structufalterations ofn,(r)]. Most descnpuqns are energetically equwalgnt: the sqlutlons of the
especially, the so-called Mott transitiqa2,1], which de- Mass action Iav(lMAIT) are the same since the differences of
scribes the delocalization of initially bound electrons, isthe chemical potentials for bound and plasma electrons stay

hoped to be better understood by such a consisteigtt the same. Furthermore, hyc_zlrogenlike systems imply the use
transition and the composition of hot, dense plasmas havg the Bethe-Salpeter equation, a two-particle quantum equa-
been of scientific interest for many decades. Approachelon Of motion. Subsuming the plasma effects into an effec-
similar to the one presented here, involving the work of Per{iv& Hamiltonian, a consistent two-particle picture can be
rot and Dharma-Wardangl3,14], Rosenfeld[15] and, re- Qevelopedsee[24], as amore recent yvork, e.g25). Start-
cently, Chiu and Ng16], are exemplarily quotellt has to "9 from the notion of |nd_|V|duaI particlegather than den-
be cautioned, though, that the separat[@y. (3)] is an sities, as in DFT, energetic _effects ba_sed on the symmetry
approximation. In particular, the boundary condition prope_rtles of the wave fu_nctlo(rmorrelauon,_phase—space oc-
non(f—) is not substantiated by any physical argumentCUpat'O') and the dynamlcs.o.f the screening process can be
and will lead to problems. expressed. The naturally arising challenge to unify DFT with
Four comments have to be made at this point. First, th@'opagator-based plasma pictures has been acknowledged
separatior Eq. (3)] “aggregates,” so to speak, the initially 2nd addressed, e.g., i8]. Recently, new progress has been
pure Coulomb interaction, together with the quantum charM@de in this areq26] and references therginCertain one-
acter of the particles, into “chemical interactions”; van der partu?le concepts as, e.g., the continuum edge are, h_owgver,
Waals interactions will, for instance, entgi"[n* i, :T]. _not wab!e in the context_of statistical atoms where ionization
Usually, this aggregated interaction is formulated with the'S described by comparing systems witrandN—1 bound
help of parameters; in the case of the van der Waals equatio‘ﬂeCt_rons' \_/vherdN has to remain large. Excitation p_henom—
of state (EOS, for instance, the parameters are the hardEna in statistical atoms can, of course, not be studied on the
sphere radii of the bound states. The spirit of the free energ§lfounds of DFT or TF theory, which are zero temperature
[Eq. (3)] is to make these radii correspond to the surrounding€0ries, but must employ the DFT extension of Meriffin
plasma. It is in this sense that the consistency improvementsC’ Mmore than one bound electron, furthermore, the screen-
of the overall plasma description will be understood. ing will also affect the mutuall rep_uIS|on of the glectrons in
Second, the applicability of Thomas-FerifliF) theory :[‘he core (see [.28],, for a hel[um!lke theory. Since the_
has to be discussed. It may be interesting to note that, albeithemical reaction” for the ionization of bound state species
being formulated some 40 years earlier, TF theory can bé&
understood as a special case of DFT. The well-known ze(z+1)+e, (5)
anomalies of TF theory originate from the crude approxima-
tion of the kinetic energy. This, however, can be correcteds necessarily a one-electrée., a hydrogenlikemodel, the
[17-20, with the resulting binding energies being surpris-equivalence of both pictures is maintained only up to leading
ingly accurate(further corrections account for the exchange(i.e., net chargeorder. Also, and in the context of this work
energy of the electrong1]). Formally, the corrections can of crucial importance, the corresponding structure will differ.
be grouped into an expansior}22,8 which leads, at least in  Simultaneously obtaining an effective binding energy and
principle, to a full quantum theory. Nevertheless, it has to behe according structures,(r), n* (r), andri,(r) is another
kept in mind that TF theory describes a statistical atomjllustration of the kind of consistency improvement this pa-
whence its applicability for smal is principally limited. per strives to achieve.
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[l. THOMAS-FERMI-LIKE BOUND STATES Vzvgﬁ: szgff—47-mZN,

IN DEBYE-HU CKEL PLASMAS (11)

2_ —1r % 2
As already hinted at in the Introduction, for the bound KE=AmT [ p* +2p,],
state portion of the free enerd¥q. (4)] zero temperature

) ) where th re the therm namical limi f the distribu-
shall be assumedfrom here on, atomic units shall be ere thep are the thermodynamica ts of the distribu

tionsn*(r) andn,(r), andris the dimensionless tempera-

adopted: ture kg T/Ry.
Eo o] = Eonf Non - T=0 One convinces oneself easily that the Poisson equation
N Nzn] = Fzalnzy; T=0] [Eq. (11)] is solved by a certain shape of the energy func-
tional:

) Z
~ Py T=01 [ arngy() | )
Eznl 7zn]+ F™nzn,n* 0, TI=Ezn[nzni ], (12)
1 o, Nza(r)nzy(r’) s . ]
+3 | drdr BRI (6)  where inE,y all Coulombic terms are screened in the usual
DH fashion:
Then, the bound state structure is found by seeking a station-

ary value of the functiondlEqg. (4)] with respect to variation Eznlnzn; k] =T+ Eezt Eee

of nzy and inclusion of a Lagrange multipliery for the
normalization condition: Z%(3W2)2/3f dFnzy(r)*®
S(Ezn[nzn]+F™([ngy,n*,f,;T]) f JZexg —«r]
Bgn(T) +An=0. (7) - drfnm(r)
In Eq. (7) an effective potentiazbgff emerges: +%f f dFdF’M
r—r’

nzn(r') — SFMX
[F=7'|  ongy°

vgff(r):_§+J dF ® xexpl k|F—F'|]. (13

At this stage the physical interpretation has to be reiterated.

In atomic TF theoryp " is related, via the Poisson equation, As is well known, expectation values ef “'/r must not be
to the electron density,, and thus the famous TF differen- constructed since the acting potential can only be Coulom-
tial equation is found. In the plasma context, however, parPic. Consequently, the Yukawa-like factors in Efj3) must
of the effective potential is given rise to by the charge dis-P€ understood as belonging to neither the potential nor the
tribution of the plasma around the bound state. Acknowledgdensity. The functiondty has rather to be thought of as the
ing this, the following Poisson relation derives: special form of the energieE,n+F™* with presupposed

DH structure for the plasma charges around the bound state

© considered. EquatiofiLl), together with

V2 ef=4m| Z8(F)—nyy—n* + 2, zn,
z

5EZN[nZN;K]

Equations equivalent to Eq9) for the variations with re- onzn(r)
spect ton* and then, generate a complete system of equa- . .
tions. It should be noted that atomic TF theory as well asgescrlbe_s, thus, an adaptable bound state embedded in a
conventional DH theory are contained in E§) as limits. ebye-Hiekel plasma within the chemical picture:

For n*, n,—0, the plasma effects frofa™* vanish and the — kT
description of an isolated bound state remains.ZeN and 3[3m2n N (r) 13-
a &like electron distributiomyy, Eg. (9) presents the stage

of DH theory before the Maxwell-Boltzmann ansatz and lin- ) B
earization[23,1]. Performing the DH procedure on E(P) x[err =l —exr+r'l] 4 - =0. (15)
destroys, however, the self-consistency of the bound state

and plasma charge densities. In the spirit of DH theory, & ghould be mentioned that immediate improvement to
pointlike test charge generates the electrostatic screeningiynie DH theory is readily at hand by extending Boltzmann
The approximation imminent in applying the DH line of giaistics to the full Fermi function expressions for quantum
thouqht is, consequently, to Ereat the e>_<tended bound state ﬁﬁrticles in Eq.(10) and/or perturbation theory for a test

[25(F) = nzn(r)]—(Z—N)&(F). Thus with charge with extended charge distribution. As already sug-

gested above, treating the kinetic energyﬁﬂ\, locally as
that of a homogeneous, fully degenerate electron gas gener-
(100 ates TF theory.
n,~exgzvg'/kgT], Referring the reader to the above-quoted tesese also
[29]) for details, the usual TF analysis is straightforward.
and linearization Eq(9) changes to Introducing the so-called TF screening function,

+Ay=0, (14)

+27TJd/I !
" P rr'nzy(r’)

n* ~exd —vMkgT],
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Z electrons. Remembering that the objective of TF theory is a
n(r) = 3[37%nzn(r)]1%R (16)  “statistical” atom, i.e., one with largé\, this corresponds to
the derivative with respect tbl. As discussed in the Intro-
the differential equation duction, the correction to the ionization energy duextcan
be identified as the Debye-ldkel chemical potential. The
8 2z, linear expressions above reproduce, thus immediately the
—3- V77 =0 (17 Debye-Hickel chemical potentialult/Ry=—2(Z—N)«,
depending only on the net charge of the bound state. Reas-
with the boundary conditions suringly, in this limit the chemical picture, which is a theory
for net charge interactions, and the DH limiting law are re-
7(0)=1, instated. The full solution of Eq17) will, however, provide
(18 higher order energy corrections as well as the corresponding
n(r=Rzy) =0 structure changes in the shape(fr).

AP

2 N
"t 57

7]//_ K

is established as determining the structure of a TF-like bound

state in a DH plasma. The second boundary condition points, C. Lagrange multiplier: linear approximation

again, to the chemical picture: chemical species can only be Third, the Lagrange multiplien, has to be discussed.
sensibly defined if they are spatially limited ensembles ofrhe definition of the chemical picture includes y(Ryy)
ions and electrons. This has been taken care of by introduc= 5 for some radiusR,y, [with, possibly,R,y— =, see EQ.

ing the radiusR,y. It should also be mentioned that the (18)]. At that point, Eq.(15) immediately yields
transitionk—0 in Eq. (17) reproduces correctly the atomic ’

TF differential equation as had to be expected from the dis- Ay € “Ran 2w (Ren ) ,
cussion of the Poisson relati¢Bq. (9)]. Equationg(17) and 2~ Ry Z-—— . dr'r'ngn(r’)
(18) entail a number of implications that highlight the prob-
lem of bound states in a plasma. - -
X[efxlrfr \_efk(rﬂ)]
A. Asymptotics
First, the famous asymptotic solutiop~r ~3 [27] for the - ﬂe* Ran+O(k?). (20
isolated TF atom, giving it an infinite radius, is disallowed in Rzn

Eqg. (17). One convinces oneself easily, however, that
~constr is an exact solution that correspon@s$. the defi-
nition of ») to a constanhyy. This solution does not agree

with the above definition of the chemical picture and has woroduces a net charge dependence. Again, the full solution

. L . —_will acknowledge simultaneously higher order effects and
be disregarded within the framework of this paper. It points, I
. ; . “Ustructure. For vanishingk, the well-known value Z
however, to a physical picture where the electron density i N)/R,y, is recovered. For the isolated neutral atom, this
the plasma is nofartificially) divided into bound and free meanQ\ZN—O' the ne trél atom in a plasma will be disc ,ssed
parts but is described byne correlation function. belo 5 u inap wi Iscu
For the boundary conditiotl8), Eq.(17) delivers further- W.

more 7" (Rzy) >0 for A\y>0 (see below. Together with the Rtegarding dths (i?/imical potentigls dan?)\t’\;\, confusic;n
linear term inr, this preventsRz from tending toward in- must be avoided. erea, corresponds to the normaliza-
finity. tion of the bound electron density,,y couples the bound

state to the plasma by describing—due to the formal choice
discussed in the Introduction—either the ionization energy
correction or the limiting law.

Second, it should be noted that any plasma effect in the
solution of Eq.(17) is of orderO(«?). If, however, in the
energy functional13) the exponential is expanded, a linear
term arisegthe problems of an expansion under the integral  Fourth, the normalization of the bound electron density

Similar to the chemical potential,y, linear approximation

B. Debye-Hickel chemical potential: linear approximation

D. Normalization and delocalization

can be controlled, remembering thaty— 0 for largerr): nzn(r)
exd — «r] n R |
—zf nZNf’:—Z]%'FZKN, f Mamr2dr ny(r)=N 1)
0
(19
1 Nzn(F)Nzn(F") . , . .
2 WGXF{—”] can, by integration by parts, and use of the TF differential
equation[Eq. (17)], be expressed as
Nz N(P)NZN(F
1 f f %—gkm

0% 7' (RyR ’ f ! M Ran
= + - rrop(r)— .
In TF ideology, the ionization energies are found as the dif- 7' (RznRan “ 0 ") 6Z

ferences of the ground state energiesNoandN—1 bound (22
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The last term in natural unitss[\y/(Z€*/Rzn)1(kRzN)2, 5 8v2_,,(Ro o 12
reveals the interplay of a structural nonideality parameter Ezn/Ry=7z-Z JO dr n(r)>
(kRzy) and an energetic one that measures the chemical

potential Ay against the potential energy of an electron lo- 8v2 Ro AN
cated at the radiuR,y, of the bound state. Since the slope of - EZS/ZL dr (r)%¥r e~ - N

7 atRyy and the third term on the right-hand side Eq(22)

are necessarily nonpositive, the linear approximation\fer (25

from Eq. (20) gives a simple delocalization criterion:
For the isolated TF atomN=2Z, «=0), the ground state
[ 5 [Ren energy has been shown to scale witf®. This is of limited
0=7"(Rzn)Rzn—x J; drra(r) interest since the neutral atom has been shown to be unstable
in any plasma environment. The ground state energies of

Z—N (kRzpn)? positive ions N<Z have been shown to scale &5y
ik 3 0 23 ~Z73(N/Z) [30,31]. The different contributions t& are
easily found to be related by
such that for
Eeez_%[)\NN"'EeZ"' %T] (26)
(kRzp)>V3 (24

The factor 1/2 in Eq.26) is hidden in the difference of
no bound states can be formed anymore. Since(Z4).has  exponentials in the effective potentiaf": if these, for in-
been derived from the linear apprOXimation, which Certainlystance, in Eq(13), are expanded, an exacﬂy Compensating
has to be judged rather poor at the actual point of delocaltactor of 2 arises in the linear term to reproduce the virial
ization (it leaves the structure unperturbethe validity of  theorem for isolated bound states. Equati@f) must not,
this criterion should be put in perspective. Furthermore, Ednowever, be interpreted as a virial theorem, since in the total
(23) leads to the astonishing assertion that the neutral atomsnergy import from the plasma is included. It would be of

N=Z, s, even for arbitrarily weak screening, unstable. Thlsinterest to extract the screening contribution fréy, and

resuIF must be understpod as an artifact of TF ”‘eofy-. A.‘Sstudy the relations of the remaining terms. This, however, is
mentioned above, the isolated neutral atom has an mﬂmtgot possible in a transparent way

radiusR;,=; in other words, the bound electron density is
already delocalized. It seems to be plausible that this state
cannot be delocalized further. Further insight can be gained
from the differential equation itseffEq. (17)]: the stronger The above discussion shall be illustrated with the numeri-
curvature in comparison withy(«=0) means steeper slopes cal exampleZ=10. This humber is large enough to justify
at the origin and, simultaneously, that less electronic densityhe statistical approach to the binding problem, yet small
can be accommodated in the region near the nucleus. Sinegiough to circumvent relativistic corrections that become
Rz is already infinite, this cannot be compensated for in thenecessary for large nuclear attracti@2,33. It may be in-
outer regions, resulting again in a no-binding notion. teresting to note that, with all available corrections applied,

Physically, the mechanism of delocalization in the spiriteven the hydrogen atom ground state energy can be repro-
of this paper becomes transparent: in the outer region of th@uced to within 8% by TF theory29]. Together with the
atom the mutual repulsion of two elements of the core elecproof by Lieb[34,35 that forZ— o TF theory is exact; this
tron density is hardly effected by the electrostatic screeningnakesz=1 a rather good approximation for infinity. Also,
if the distance between those is small. At the same time, thgf theory is thus asserted as a useful tool for binding prob-
distance to the nucleus is large, and consequently the attragms for the majority of chemical elements.
tion to it strongly effected by the Yukawa-like cutoff of the In the numbers and figures that follow, the apparatus as
potential. In the overall energy balance, then, the repulsiogieveloped above will be illustrated. Due to the nature of the
Eee remains larger in comparison witB,, and forces the approximations made and the decisive fault of the instability
densityn,(r) to extend to higheRzy. of the neutral atom, the presented example cannot have any

Hence for positive iondl<Z, R,y increases withc up to  meaning for real plasmas. Such a work will be a natural
a point where the delocalization criteri¢®3) is violated. As  follow-up to this work, with a more refined description of the
will be commented on in the numerical example below, thisbound state and the charge cloud around it; especially, how-
point is numerically extremely difficult to access due to theever, of the kinetic energ¥. The essence of the presented
simultaneous transitionsy— small, andR,y— large. theory can, however, already be seen from the simple variant
presented in this paper.

Figure 1 shows the dependence of the ground state energy
on the plasma inverse screening lengtlior the first three

For evaluating the double integral in the ground state eNpositive ionsN=9, N=8, andN=7. The ionization energy,
ergy functional(13), the differential equation can be used in a5 has been pointed out above, is given by the difference of
a similar way as in the normalization discussed above. Therhese energies. Figure 1 clearly shows the diminishing of the
the total energyE,y of the electron gas in the field of a ionization gap for increasing. However, delocalization—as
nucleus ar =0 and the electrostatic plasma charge cloud isdefined above by the violation of the normalization condition
found as [Eq. (23)]—occurs before the energy curves crgss Fig.

F. Numerical example: Z=10

E. Ground state energy
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FIG. 1. Ground state energin Ry) of positive ionsN=9,8,7 as
a function of the screening parametefin agl). Note that ioniza-
tion occursbeforethe curves intersect.

FIG. 3. k dependencéin units ofagl) of ionic radiiN=9,8,7
(in ag).

3). This demonstrates the importance of treating structure oftatément that, at the point of ionization, energy can still be
the same footing as the energy corrections. Furthermore, Fig2inéd from adding electronic density to the bound state,
1 clearly shows a nonlinear behavior of the energies, thu¥hich is, of course, in open contradiction to the idea of ion-
surpassing the linear approximation as given in Etf). ization. The answer lies, again, in the electron density sepa-
Figure 2 shows, for th&l=9 ion, the difference of the full ration [Eq. (3)] and the definition ofE,y, Eq. (12). The
EZN and the linear approximation as in E49), which cor-  finite Ay signify, then, the energy of the plasma hidden in
responds thermodynamically to the DH limiting law. It is E, . Similar to those in Fig. 1, tha-curves are notably
quite obvious that even for very small valuesrothe linear  nonlinear, which underlines the necessity of a sound struc-
law is insufficient. _tural theory for bound states in plasmas. Finally, it should be
The structure changes due to the plasma, as described ipjinted out that thex effects already start to play a signifi-
the formalism developed above, is documented in Fig. 3. Ipant role at rather small values. Although this may be an
contrast to hydrogenlike bound states, wheyg really tends  _ ico ¢ of TE theory, it seems to signal, again, the impor-

toward infinity, the discussion in the context O_f E@3) tance of an appropriate treatment of the screening effects in
showed that for many-electron atoms delocalization must ngk ., o ter regions of the bound-electron density

be understood as removing the electron to infinity but rather
as the nuclear field becoming too weak to bind the number of
electrons prescribed by the definition of the chemical spe-

cies. Figure 3 shows that whilg, ¢ nearly doubles before In the Introduction, the treatment of the bound states as
ionization, the next higher ions are much less effected. laid out above was motivated by the desire to construct
Figure 4 shovys the dependence of the chemical pOtentiaﬁasma—correspondent parameters for the “aggregated”
Ay On «. Inspection of Eqsi23) and(20) shows that th&zy  chemical interactions. It seems obvious that with the chang-
being finite at the point Of. |9n|z§1t|on necessarily mea!ﬂ,s ing of bound electron density, for instance, hard sphere radii
>0 as well, as is clea_rly visible in Fig. 4. In the usual inter- and polarizabilities will change. If molecules were to be in-
pretation of the chemical potential, this would provoke thecluded, i.e., the radial symmetry broken, further contribu-

tions toF™[n*,A,: T] would arise, the parameters of which

Ill. THERMODYNAMICS

Ezn
-300}
7~ 0.14
/
-305} Ve
/ 0.12
-310F s < o1k
/
-315} s 0.08F
/
Z 0.06F
=320} o
/
0.04
-325}
0.02
.05 0.1 0,15 0.2 .25 73 K 0

FIG. 2. Difference of self-consiste(golid line) and perturbative
(dashedl ground state energgin rydbergs for the N=9 ion; « in FIG. 4. Chemical potentialsy in rydbergs as functions of (in
agl; nonlinearity effects are clearly established even for small agl). Note that theny are nonzero at ionization; explanations are
values. found in the text.
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would depend on the bound state structure as well. Théo exchange and correlation effects in the plasihg4]
mechanism of the thus adjusted chemical picture is mostvhich correspond, in a general sense, also to van der Waal's

easily demonstrated with the help of van der Waals’ EOS: parameten. Thus, a picture of a van der Waals-like descrip-
tion of quantum plasmas emerges.

a
p— W)(V—b)=NkBT- (27) IV. CONCLUSION

Starting from a general functional of the free energy of a
behavior. The parametardescribes the lowering of the pres- system of quantum electrons and _classwal nucle_l, the cher_nl-
cal picture has been shown to arise for a certain separation

surep due to mutual attraction of the molecules, wherbas . ; . .
. ansatz for the electron density. This separation entails neces-
describes the space taken up by the extended molecules

. Sarily a mixing term that cannot, on physical grounds, be
themselves. Parametasandb thus stand for an energetical assianed teither the plasmaor the bound state. In the pre-
and a structural effect, respectively. The van der Waals reaéentge d evaluation thig; Mixing term was treated in anal% to
soning can now immediately be applied to the above dis: ' g tem : gy

. the famous theory of Debye and kel [23], which led to
cussed quantum plasmas. Obviously, the paranzetarre- L . I
. L the definition of a functional describing the bound state plus
sponds to the lowering of the ionization energy due to the|ts electrostatically screening environment. Assuming further
electrostatic screening, wherdafnks to the radiiR, (Fig. y 9 ' g

3). It is then possible to define an analogous paraniejers the kinetic energy of the bound electrons to be Thomas-
: P 9 parantef Fermi-like, a simple analysis was made possible. Unsurpris-

b, 214 ingly, this showed the usual flaws of TF theory, even en-
q a 3 .
—= E —p R, (29 hanced up to the point of generally unstable neutral atoms. A
v 7 3 ' number of features such as the delocalization mechanism or
the difference with one-electron ionization theories could,
owever, be discussed and illustrated. The bound state analy-
s, then, provided a means to construct plasma-
correspondent parameters for the chemical picture. In the
spirit of the van der Waals EOS this produced, finally, a
consistent description of energetical and structural correc-
tions to ideal gas behavior.
i=+,01...,2, (29 Concerning the approximations made, it should be noted
q that Thomas-Fermi theory can not only be corrected for its
well-known anomalies, but even turned into a surprisingly
accurate theory. Furthermore, the Debyeckil treatment of
the electrostatic screening can be improved as well. It has to
be stressed again that the assumptions of BdB—(12) de-

Equation(27) contains two empirical corrections to ideal gas

It can be stated at this point that the effective volume ter
and the energetic correction have been derived on exactly t
same footing, which is in contrast to usual ionization equi-
librium theories formulated in the chemical pictute.g.,
[24,36,37). Introducing the effective particle densities

the MAL can be formulated as

%1 (Piv ) Bz z— 41 (K) =Bz z—(i+1)(k=0)]+ u*

:M:d(ﬁi)+[ﬁz s_i(k)—Ez 7_i(k=0)], stroy the self-consistency initially contained in Ef). With
’ ’ a proper ionic structure theory inserted there instead of the
i=0,1,...Z—1. (30) Debye-Huckel ansatz, the presented framework can indeed

be extended to long-range order phenomena. It has to be
The systen{30) has, obviously, to be solved iteratively since stated that the presupposed Debyeskai-like form of the
the densitiesp; depend on the solution. In Ref38] an  charge cloud around a bound state restricts the theory to a
equivalent one-electron problem has been solved and clearlyondegenerate, weakly interacting plasma. Despite the re-
showed the effect that is expected in E80) as well: start-  strictive character of the approximations, it can be registered
ing with the isolated bound state valbg(«=0), the plasma as a general result of this work that for chemical species,
composition will yield a finitex. This, in turn, increases the which can—due to the number of bound electrons—be la-
Rzn and produces a new plasma composition with yet anbeled statistical, the interaction of the outer regions of the
other k. Potentially, this loop contains the point where thecore electronic density with the plasma is of great impor-
plasma composition becomes unstable, which is a thermodyance. Delocalization and a correspondent understanding of
namical expression of the Mott transition discussed above. Ahe Mott transition follow.
numerical example for this phenomenon can, within the The aim of this paper was not to present a numerically
framework of this work, however, not be given due to theaccurate theory but to highlight the general problem of con-
decisive fault of the neutral TF atoms being unstable and hasistency of structural and energetical changes when applying
to be left to subsequent work. In the MA(30) the plasma the chemical picture to nonideal plasmas. In this respect the
chemical potentiak* may contain further contributions due MAL (30) presents the desired improvement in consistency.
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