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Electron density separations in nonideal plasmas: Structure of Thomas-Fermi-like bound states
and the Mott transition

H. Lehmann
GMD-FIRST, Rudower Chaussee 5, 12489 Berlin, Germany

~Received 20 May 1998; revised manuscript received 10 January 2000!

Starting from a general free energy functional, the chemical picture for nonideal plasmas arises from a
certain separation of the electron density. Defining a bound state and its electrostatically screening plasma
environment as a subsystem, a simple theory for plasma-correspondent bound state structure can be formu-
lated. This provides the possibility to derive adjustable parameters for the interactions in the chemical picture.
The Mott transition corresponds to the violation of the normalization condition due to plasma influences.

PACS number~s!: 52.25.2b
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I. INTRODUCTION: THE CHEMICAL PICTURE
OF PLASMAS

The equilibrium properties of Coulombic matter ha
been studied since the early days of statistical physics.
pending on the position in the density-temperature pla
Coulomb matter—or plasmas, in the vocabulary of t
work—presents itself in vastly differing shapes; examp
are as far adrift as stellar interiors, electron-hole plasma
semiconductors, the Wigner crystal, classical electroly
and so forth. Naturally, emphases and toolkits of theoret
approaches differ accordingly: dilute systems are succ
fully described by the assumption that electrons and ions
grouped into bound states which themselves form the
lecular chaos of a gas. The ionization processes in this
can be thought of as chemical reactions between free e
trons and different ions. Hence this approach is usually
ferred to as the ‘‘chemical picture’’~see, e.g.,@1#!. Dense
systems, on the other hand, connect to solid state phy
with ionic crystalline order~or the remnants of it as, fo
instance, in liquid metals! and itinerant electrons@2,3#. Non-
ideal plasmas, which are characterized by notable correct
to the ideal kinetic energy due to the Coulomb interacti
are located in the region of the density-temperature pl
that connects to both limits of theory buildup. A consiste
plasma theory should, therefore, contain a principal brid
from molecular chaos to long-range order. Despite a num
of attempts~for instance, a hydrogen theory@4#!, such a
theory is, rather unsurprisingly, in general still elusive.
general theme, however, has to be the consistency of s
tural and energetical description. This paper will presen
route toward improved consistency starting from the che
cal picture employing the spirit of density functional theo
~DFT!. Since its foundation in 1964 and 1965@5–7#, DFT
has been applied successfully to a wide variety of Coulo
matter problems~see anthologies@8–10#!. Since both the
success and the theoretical beauty of DFT lie in its s
consistency~a charge density generates a potential tha
turn determines the distribution of the charges!, it seems
tailor-made for addressing the problem sketched above.
system ofNi pointlike, Z-fold charged nuclei andNe5ZNi
electrons the Helmholtz free energy can be formulated a
functional of ionic and electron densities,ni(r ) and ne(r ),
PRE 611063-651X/2000/61~5!/5717~8!/$15.00
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respectively, where the origin has been fixed without loss
generality on an arbitrary nucleus with the temperatureT as
parameter~a.u.!:

F@ne~r !,ni~r !;T#5Fid@ne~r !#1Fid@ni~r !#

1E
0

1

dj^Vee1Vii 1Vei&j

1E drW
Z

r
@Zni~r !2ne~r !#. ~1!

The charging expression via the coupling constantj of the
interaction potentialV holds for both classical and quantu
statistics@11#. With the choice of origin, the normalization

E drWni~r !5Ni21,

~2!

E drWne~r !5Ne5ZNi

follow. Consequently, the electron densityne(r ) balances the
ionic charge in the plasma@second line of Eq.~1!# as well as
the nuclear field of the charge at the origin~third line!. In the
chemical picture,ne(r ) is assumed to separate generati
bound states@the one at the origin with densitynZN(r ) and
those in the plasma labeled by their net chargez# and itiner-
ant plasma electrons:

ne~r !5nZN~r !1(
z

~Z2z!nz~r !1n* ~r !,

nZN~r→`!→0, ~3!

n* ~r→`!→r* 5const.

Inevitably, a free energy reformulated in this separation c
tains a mixing term due to the interaction of the bound st
with the surrounding plasma:
5717 ©2000 The American Physical Society
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5718 PRE 61H. LEHMANN
F@nZN ,n* ,nW z ;T#5F id@nZN ;T#1F id@n* ,nW z ;T#

1Fmix@nZN ,n* ,nW z ;T#1F int@n* ,nW z ;T#

2E drW
Z

r
nZN~r !

1 1
2 E drW drW8

nZN~r !nZN~r 8!

urW2rW8u
. ~4!

Otherwise, ideal and interaction contributions can be
signed to the bound stateor the plasma. Equation~4! sug-
gests already the shape of the theory as it will be develo
below; assumingT50 for the bound electrons,F id@nZN ;T#
plus the last two terms in Eq.~4! present a bound state prob
lem that can be tackled by Thomas-Fermi-like methods.
the mixing termFmix, this bound state is coupled to th
plasma, which itself is in a ‘‘chemical’’~i.e., ionization!
equilibrium determined byF int@n* ,nW z ;T#. The adjustment of
the bound state to the surrounding plasma presents a
albeit simple—step toward improved consistency of str
ture and energy in the sense addressed above. Nonide
corrections to the ionization energy are complemented by
according change of structure@alterations ofnZN(r )#. Most
especially, the so-called Mott transition@12,1#, which de-
scribes the delocalization of initially bound electrons,
hoped to be better understood by such a consistency.~Mott
transition and the composition of hot, dense plasmas h
been of scientific interest for many decades. Approac
similar to the one presented here, involving the work of P
rot and Dharma-Wardana@13,14#, Rosenfeld@15# and, re-
cently, Chiu and Ng@16#, are exemplarily quoted.! It has to
be cautioned, though, that the separation@Eq. ~3!# is an
approximation. In particular, the boundary conditio
nZN(r→`) is not substantiated by any physical argume
and will lead to problems.

Four comments have to be made at this point. First,
separation@Eq. ~3!# ‘‘aggregates,’’ so to speak, the initiall
pure Coulomb interaction, together with the quantum ch
acter of the particles, into ‘‘chemical interactions’’; van d
Waals interactions will, for instance, enterF int@n* ,nW z ;T#.
Usually, this aggregated interaction is formulated with t
help of parameters; in the case of the van der Waals equa
of state ~EOS!, for instance, the parameters are the h
sphere radii of the bound states. The spirit of the free ene
@Eq. ~3!# is to make these radii correspond to the surround
plasma. It is in this sense that the consistency improvem
of the overall plasma description will be understood.

Second, the applicability of Thomas-Fermi~TF! theory
has to be discussed. It may be interesting to note that, a
being formulated some 40 years earlier, TF theory can
understood as a special case of DFT. The well-kno
anomalies of TF theory originate from the crude approxim
tion of the kinetic energy. This, however, can be correc
@17–20#, with the resulting binding energies being surpr
ingly accurate~further corrections account for the exchan
energy of the electrons@21#!. Formally, the corrections ca
be grouped into an\ expansion@22,8# which leads, at least in
principle, to a full quantum theory. Nevertheless, it has to
kept in mind that TF theory describes a statistical ato
whence its applicability for smallZ is principally limited.
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As a third comment, it should be noted that the arbitra
separation@Eq. ~3!# potentially contains the onset of long
range order if a suitable structure theory for the heavy p
ticles is employed in the formulation of the plasma free e
ergy ~see, e.g.,@2,3#!. In the framework of this paper
however, the consistency notion shall be restricted to
bound state and its immediate environment. This is for Bo
zmann statistics inF id@n* ,nW z ;T# in leading order given by
electrostatic screening and will be shown below to rep
duce, under certain approximations, the famous theory
Debye and Hu¨ckel ~DH! @23#. GeneralizingF id@n* # to its
full Fermi function expression presents an immediate me
to extend the concept of electrostatic screening beyond
~an example is the well-known Thomas-Fermi screening i
fully degenerate electron gas@10,1#!.

Finally, the conundrum presented by the mixing te
Fmix@nZN ,n* ,nW z ;T# has to be addressed. With respect to t
chemical description of the plasma, two choices can
made: either the plasma effects are regarded as modif
the binding energy of the bound state, thus altering its sum
states, or this is left at its ideal value and the difference
subsumed into the nonideality contributions to the plas
thermodynamical potentials. For hydrogenlike systems b
descriptions are energetically equivalent: the solutions of
mass action law~MAL ! are the same since the differences
the chemical potentials for bound and plasma electrons
the same. Furthermore, hydrogenlike systems imply the
of the Bethe-Salpeter equation, a two-particle quantum eq
tion of motion. Subsuming the plasma effects into an eff
tive Hamiltonian, a consistent two-particle picture can
developed~see@24#, as a more recent work, e.g.,@25#!. Start-
ing from the notion of individual particles~rather than den-
sities, as in DFT!, energetic effects based on the symme
properties of the wave function~correlation, phase-space oc
cupation! and the dynamics of the screening process can
expressed. The naturally arising challenge to unify DFT w
propagator-based plasma pictures has been acknowle
and addressed, e.g., in@8#. Recently, new progress has be
made in this area~@26# and references therein!. Certain one-
particle concepts as, e.g., the continuum edge are, howe
not viable in the context of statistical atoms where ionizat
is described by comparing systems withN andN21 bound
electrons, whereN has to remain large. Excitation phenom
ena in statistical atoms can, of course, not be studied on
grounds of DFT or TF theory, which are zero temperatu
theories, but must employ the DFT extension of Mermin@7#.
For more than one bound electron, furthermore, the scre
ing will also affect the mutual repulsion of the electrons
the core ~see @28# for a heliumlike theory!. Since the
‘‘chemical reaction’’ for the ionization of bound state speci
z,

z⇔~z11!1e2, ~5!

is necessarily a one-electron~i.e., a hydrogenlike! model, the
equivalence of both pictures is maintained only up to lead
~i.e., net charge! order. Also, and in the context of this wor
of crucial importance, the corresponding structure will diffe
Simultaneously obtaining an effective binding energy a
the according structuresnZN(r ), n* (r ), andnW z(r ) is another
illustration of the kind of consistency improvement this p
per strives to achieve.
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II. THOMAS-FERMI-LIKE BOUND STATES
IN DEBYE-HÜ CKEL PLASMAS

As already hinted at in the Introduction, for the bou
state portion of the free energy@Eq. ~4!# zero temperature
shall be assumed~from here on, atomic units shall b
adopted!:

EZN@nZN#5FZN@nZN ;T50#

5F id@nZN ;T50#2E drW
Z

r
nZN~r !

1 1
2 E drW drW8

nZN~r !nZN~r 8!

urW2rW8u
. ~6!

Then, the bound state structure is found by seeking a sta
ary value of the functional@Eq. ~4!# with respect to variation
of nZN and inclusion of a Lagrange multiplierlN for the
normalization condition:

d~EZN@nZN#1Fmix@nEN ,n* ,nW z ;T# !

dnZN~r !
1lN50. ~7!

In Eq. ~7! an effective potentialve
eff emerges:

ve
eff~r !52

Z

r
1E drW8

nZN~r 8!

urW2rW8u
1

dFmix

dnZN
. ~8!

In atomic TF theory,ve
eff is related, via the Poisson equatio

to the electron densitynZN and thus the famous TF differen
tial equation is found. In the plasma context, however, p
of the effective potential is given rise to by the charge d
tribution of the plasma around the bound state. Acknowle
ing this, the following Poisson relation derives:

¹2ve
eff54pFZd~rW !2nZN2n* 1(

z
znzG . ~9!

Equations equivalent to Eq.~9! for the variations with re-
spect ton* and thenz generate a complete system of equ
tions. It should be noted that atomic TF theory as well
conventional DH theory are contained in Eq.~9! as limits.
For n* , nz→0, the plasma effects fromFmix vanish and the
description of an isolated bound state remains. ForZ5N and
a d-like electron distributionnZN , Eq. ~9! presents the stag
of DH theory before the Maxwell-Boltzmann ansatz and l
earization@23,1#. Performing the DH procedure on Eq.~9!
destroys, however, the self-consistency of the bound s
and plasma charge densities. In the spirit of DH theory
pointlike test charge generates the electrostatic screen
The approximation imminent in applying the DH line o
thought is, consequently, to treat the extended bound sta
@Zd(rW)2nZN(r )#→(Z2N)d(rW). Thus with

n* ;exp@2ve
eff/kBT#,

~10!
nz;exp@zve

eff/kBT#,

and linearization Eq.~9! changes to
n-

rt
-
-

-
s

-

te
a
g.

as

¹2ve
eff5k2ve

eff24pnZN ,
~11!

k254pt21@r* 1z2rz#,

where ther are the thermodynamical limits of the distribu
tions n* (r ) andnz(r ), andt is the dimensionless tempera
ture kBT/Ry.

One convinces oneself easily that the Poisson equa
@Eq. ~11!# is solved by a certain shape of the energy fun
tional:

EZN@hZN#1Fmix@nZN ,n* ,nz ;T#5ẼZN@nZN ;k#, ~12!

where inẼZN all Coulombic terms are screened in the usu
DH fashion:

ẼZN@nZN ;k#5T̃1ẼeZ1Ẽee

5 3
10 ~3p2!2/3E drW nZN~r !5/3

2E drW
Z exp@2kr #

r
nZN~r !

1 1
2 E E drW drW8

nZN~r !nZN~r 8!

urW2rW8u

3exp@kurW2rW8u#. ~13!

At this stage the physical interpretation has to be reitera
As is well known, expectation values ofe2kr /r must not be
constructed since the acting potential can only be Coulo
bic. Consequently, the Yukawa-like factors in Eq.~13! must
be understood as belonging to neither the potential nor
density. The functionalẼZN has rather to be thought of as th
special form of the energiesEZN1Fmix with presupposed
DH structure for the plasma charges around the bound s
considered. Equation~11!, together with

dẼZN@nZN ;k#

dnZN~r !
1lN50, ~14!

describes, thus, an adaptable bound state embedded
Debye-Hückel plasma within the chemical picture:

1
2 @3p2nZN~r !#2/32

Ze2kr

r
1

2p

kr E dr8 r 8nZN~r 8!

3@ekur 2r 8u2ekur 1r 8u#1
lN

2
50. ~15!

It should be mentioned that immediate improvement
simple DH theory is readily at hand by extending Boltzma
statistics to the full Fermi function expressions for quantu
particles in Eq.~10! and/or perturbation theory for a tes
charge with extended charge distribution. As already s
gested above, treating the kinetic energy inẼZN locally as
that of a homogeneous, fully degenerate electron gas ge
ates TF theory.

Referring the reader to the above-quoted texts~see also
@29#! for details, the usual TF analysis is straightforwa
Introducing the so-called TF screening function,
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5720 PRE 61H. LEHMANN
h~r !
Z

r
5 1

2 @3p2nZN~r !#2/3, ~16!

the differential equation

h92k2Fh1
lNr

2Z G2
8

3p
A2Z

r
h3/250 ~17!

with the boundary conditions

h~0!51,
~18!

h~r 5RZN!50

is established as determining the structure of a TF-like bo
state in a DH plasma. The second boundary condition po
again, to the chemical picture: chemical species can only
sensibly defined if they are spatially limited ensembles
ions and electrons. This has been taken care of by introd
ing the radiusRZN . It should also be mentioned that th
transitionk→0 in Eq. ~17! reproduces correctly the atom
TF differential equation as had to be expected from the
cussion of the Poisson relation@Eq. ~9!#. Equations~17! and
~18! entail a number of implications that highlight the pro
lem of bound states in a plasma.

A. Asymptotics

First, the famous asymptotic solutionh;r 23 @27# for the
isolated TF atom, giving it an infinite radius, is disallowed
Eq. ~17!. One convinces oneself easily, however, thath
;constr is an exact solution that corresponds~cf. the defi-
nition of h! to a constantnZN . This solution does not agre
with the above definition of the chemical picture and has
be disregarded within the framework of this paper. It poin
however, to a physical picture where the electron density
the plasma is not~artificially! divided into bound and free
parts but is described byonecorrelation function.

For the boundary condition~18!, Eq.~17! delivers further-
moreh9(RZN).0 for lN.0 ~see below!. Together with the
linear term inr, this preventsRZN from tending toward in-
finity.

B. Debye-Hückel chemical potential: linear approximation

Second, it should be noted that any plasma effect in
solution of Eq.~17! is of orderO(k2). If, however, in the
energy functional~13! the exponential is expanded, a line
term arises~the problems of an expansion under the integ
can be controlled, remembering thatnZN→0 for largerr!:

2ZE nZN

exp@2kr #

r
.2ZE nZN

r
1ZkN,

~19!

1
2 EE nZN~rW !nZN~rW8!

urW2rW8u
exp@2kr #

. 1
2 EE nZN~rW!nZN~rW8!

urW2rW8u
21

2kN2.

In TF ideology, the ionization energies are found as the
ferences of the ground state energies forN andN21 bound
d
s,
e
f
c-

-

o
,

in

e

l

f-

electrons. Remembering that the objective of TF theory i
‘‘statistical’’ atom, i.e., one with largeN, this corresponds to
the derivative with respect toN. As discussed in the Intro
duction, the correction to the ionization energy due tok can
be identified as the Debye-Hu¨ckel chemical potential. The
linear expressions above reproduce, thus immediately
Debye-Hückel chemical potentialmZN

DH/Ry522(Z2N)k,
depending only on the net charge of the bound state. R
suringly, in this limit the chemical picture, which is a theo
for net charge interactions, and the DH limiting law are r
instated. The full solution of Eq.~17! will, however, provide
higher order energy corrections as well as the correspon
structure changes in the shape ofh(r ).

C. Lagrange multiplier: linear approximation

Third, the Lagrange multiplierlN has to be discussed
The definition of the chemical picture includesnZN(RZN)
50 for some radiusRZN @with, possibly,RZN→`, see Eq.
~18!#. At that point, Eq.~15! immediately yields

lN

2
5

e2kRZN

RZN
FZ2

2p

k E
0

RZN
dr8 r 8 nZN~r 8!

3@e2kurW2rW8u2e2k~rW1rW !#G
5

Z2N

RZN
e2kRZN1O~k2!. ~20!

Similar to the chemical potentialmZN , linear approximation
produces a net charge dependence. Again, the full solu
will acknowledge simultaneously higher order effects a
structure. For vanishingk, the well-known value (Z
2N)/RZN is recovered. For the isolated neutral atom, t
meanslZ50; the neutral atom in a plasma will be discuss
below.

Regarding the chemical potentialsmZN andlN, confusion
must be avoided. WhereaslN corresponds to the normaliza
tion of the bound electron density,mZN couples the bound
state to the plasma by describing—due to the formal cho
discussed in the Introduction—either the ionization ene
correction or the limiting law.

D. Normalization and delocalization

Fourth, the normalization of the bound electron dens
nZN(r )

E
0

RZN
4pr 2 dr nZN~r !5

!
N ~21!

can, by integration by parts, and use of the TF differen
equation@Eq. ~17!#, be expressed as

05
!

h8~RZN!RZN1
Z2N

Z
2k2E

0

RZN
dr r h~r !2

lNk2RZN
3

6Z
.

~22!
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The last term in natural units,16 @lN /(Ze2/RZN)#(kRZN)2,
reveals the interplay of a structural nonideality parame
(kRZN) and an energetic one that measures the chem
potentiallN against the potential energy of an electron
cated at the radiusRZN of the bound state. Since the slope
h at RZN and the third term on the right-hand side Eq. of~22!
are necessarily nonpositive, the linear approximation forlN
from Eq. ~20! gives a simple delocalization criterion:

05
!

h8~RZN!RZN2k2E
0

RZN
dr rh~r !

1
Z2N

Z F12
~kRZN!2

3 G , ~23!

such that for

~kRZN!.) ~24!

no bound states can be formed anymore. Since Eq.~24! has
been derived from the linear approximation, which certai
has to be judged rather poor at the actual point of delo
ization ~it leaves the structure unperturbed!, the validity of
this criterion should be put in perspective. Furthermore,
~23! leads to the astonishing assertion that the neutral a
N5Z, is, even for arbitrarily weak screening, unstable. T
result must be understood as an artifact of TF theory.
mentioned above, the isolated neutral atom has an infi
radiusRZZ5`; in other words, the bound electron density
already delocalized. It seems to be plausible that this s
cannot be delocalized further. Further insight can be gai
from the differential equation itself@Eq. ~17!#: the stronger
curvature in comparison withh(k50) means steeper slope
at the origin and, simultaneously, that less electronic den
can be accommodated in the region near the nucleus. S
RZZ is already infinite, this cannot be compensated for in
outer regions, resulting again in a no-binding notion.

Physically, the mechanism of delocalization in the sp
of this paper becomes transparent: in the outer region of
atom the mutual repulsion of two elements of the core e
tron density is hardly effected by the electrostatic screen
if the distance between those is small. At the same time,
distance to the nucleus is large, and consequently the at
tion to it strongly effected by the Yukawa-like cutoff of th
potential. In the overall energy balance, then, the repuls
Ẽee remains larger in comparison withẼeZ and forces the
densitynZN(r ) to extend to higherRZN .

Hence for positive ionsN,Z, RZN increases withk up to
a point where the delocalization criterion~23! is violated. As
will be commented on in the numerical example below, t
point is numerically extremely difficult to access due to t
simultaneous transitionslN→small, andRZN→ large.

E. Ground state energy

For evaluating the double integral in the ground state
ergy functional~13!, the differential equation can be used
a similar way as in the normalization discussed above. Th
the total energyẼZN of the electron gas in the field of
nucleus atr 50 and the electrostatic plasma charge cloud
found as
r
al

-

y
l-

.
m
s
s
te

te
d

ty
ce
e

t
e
-
g
e
c-

n

s

-

n,

s

ẼZN /Ry5
8&

15p
Z5/2E

0

R0
dr h~r !5/2r 21/2

2
8&

3p
Z5/2E

0

R0
dr h~r !3/2r 21/2e2kr2

lN

2
N.

~25!

For the isolated TF atom (N5Z, k50), the ground state
energy has been shown to scale withZ7/3. This is of limited
interest since the neutral atom has been shown to be uns
in any plasma environment. The ground state energies
positive ions N,Z have been shown to scale asEZN

;Z7/3f (N/Z) @30,31#. The different contributions toẼZN are
easily found to be related by

Eee52 1
2 @lNN1EeZ1 5

3 T#. ~26!

The factor 1/2 in Eq.~26! is hidden in the difference o
exponentials in the effective potentialve

eff : if these, for in-
stance, in Eq.~13!, are expanded, an exactly compensat
factor of 2 arises in the linear term to reproduce the vir
theorem for isolated bound states. Equation~26! must not,
however, be interpreted as a virial theorem, since in the t
energy import from the plasma is included. It would be
interest to extract the screening contribution fromẼZN and
study the relations of the remaining terms. This, however
not possible in a transparent way.

F. Numerical example:ZÄ10

The above discussion shall be illustrated with the num
cal exampleZ510. This number is large enough to justif
the statistical approach to the binding problem, yet sm
enough to circumvent relativistic corrections that beco
necessary for large nuclear attraction@32,33#. It may be in-
teresting to note that, with all available corrections appli
even the hydrogen atom ground state energy can be re
duced to within 8% by TF theory@29#. Together with the
proof by Lieb@34,35# that forZ→` TF theory is exact; this
makesZ51 a rather good approximation for infinity. Also
TF theory is thus asserted as a useful tool for binding pr
lems for the majority of chemical elements.

In the numbers and figures that follow, the apparatus
developed above will be illustrated. Due to the nature of
approximations made and the decisive fault of the instabi
of the neutral atom, the presented example cannot have
meaning for real plasmas. Such a work will be a natu
follow-up to this work, with a more refined description of th
bound state and the charge cloud around it; especially, h
ever, of the kinetic energyT. The essence of the presente
theory can, however, already be seen from the simple var
presented in this paper.

Figure 1 shows the dependence of the ground state en
on the plasma inverse screening lengthk for the first three
positive ionsN59, N58, andN57. The ionization energy
as has been pointed out above, is given by the differenc
these energies. Figure 1 clearly shows the diminishing of
ionization gap for increasingk. However, delocalization—as
defined above by the violation of the normalization conditi
@Eq. ~23!#—occurs before the energy curves cross~cf. Fig.
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3!. This demonstrates the importance of treating structure
the same footing as the energy corrections. Furthermore,
1 clearly shows a nonlinear behavior of the energies, t
surpassing the linear approximation as given in Eq.~19!.
Figure 2 shows, for theN59 ion, the difference of the full
ẼZN and the linear approximation as in Eq.~19!, which cor-
responds thermodynamically to the DH limiting law. It
quite obvious that even for very small values ofk the linear
law is insufficient.

The structure changes due to the plasma, as describe
the formalism developed above, is documented in Fig. 3
contrast to hydrogenlike bound states, whereR1,1 really tends
toward infinity, the discussion in the context of Eq.~23!
showed that for many-electron atoms delocalization must
be understood as removing the electron to infinity but rat
as the nuclear field becoming too weak to bind the numbe
electrons prescribed by the definition of the chemical s
cies. Figure 3 shows that whileR10,9 nearly doubles before
ionization, the next higher ions are much less effected.

Figure 4 shows the dependence of the chemical poten
lN on k. Inspection of Eqs.~23! and~20! shows that theRZN
being finite at the point of ionization necessarily meanslN
.0 as well, as is clearly visible in Fig. 4. In the usual inte
pretation of the chemical potential, this would provoke t

FIG. 1. Ground state energy~in Ry! of positive ionsN59,8,7 as
a function of the screening parameterk ~in aB

21). Note that ioniza-
tion occursbeforethe curves intersect.

FIG. 2. Difference of self-consistent~solid line! and perturbative
~dashed! ground state energy~in rydbergs! for the N59 ion; k in
aB

21; nonlinearity effects are clearly established even for smak
values.
n
ig.
s

in
n

ot
r

of
-

ls

statement that, at the point of ionization, energy can still
gained from adding electronic density to the bound sta
which is, of course, in open contradiction to the idea of io
ization. The answer lies, again, in the electron density se

ration @Eq. ~3!# and the definition ofẼZN , Eq. ~12!. The
finite lN signify, then, the energy of the plasma hidden

ẼZN . Similar to those in Fig. 1, thelN-curves are notably
nonlinear, which underlines the necessity of a sound str
tural theory for bound states in plasmas. Finally, it should
pointed out that thek effects already start to play a signifi
cant role at rather small values. Although this may be
artifact of TF theory, it seems to signal, again, the imp
tance of an appropriate treatment of the screening effect
the outer regions of the bound-electron density.

III. THERMODYNAMICS

In the Introduction, the treatment of the bound states
laid out above was motivated by the desire to constr
plasma-correspondent parameters for the ‘‘aggregat
chemical interactions. It seems obvious that with the cha
ing of bound electron density, for instance, hard sphere r
and polarizabilities will change. If molecules were to be i
cluded, i.e., the radial symmetry broken, further contrib
tions toF int@n* ,nW z ;T# would arise, the parameters of whic

FIG. 3. k dependence~in units of aB
21) of ionic radii N59,8,7

~in aB).

FIG. 4. Chemical potentialslN in rydbergs as functions ofk ~in
aB

21). Note that thelN are nonzero at ionization; explanations a
found in the text.
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would depend on the bound state structure as well.
mechanism of the thus adjusted chemical picture is m
easily demonstrated with the help of van der Waals’ EOS

S p2
a

V2D ~V2b!5NkBT. ~27!

Equation~27! contains two empirical corrections to ideal g
behavior. The parametera describes the lowering of the pre
surep due to mutual attraction of the molecules, whereab
describes the space taken up by the extended molec
themselves. Parametersa andb thus stand for an energetica
and a structural effect, respectively. The van der Waals
soning can now immediately be applied to the above d
cussed quantum plasmas. Obviously, the parametera corre-
sponds to the lowering of the ionization energy due to
electrostatic screening, whereasb links to the radiiRZN ~Fig.
3!. It is then possible to define an analogous parameterbq as

bq

V
5 (

z

Z21
4p

3
rzRZ,Z2z

3 . ~28!

It can be stated at this point that the effective volume te
and the energetic correction have been derived on exactly
same footing, which is in contrast to usual ionization eq
librium theories formulated in the chemical picture~e.g.,
@24,36,37#!. Introducing the effective particle densities

r̃ i5
r i

12bq
, i 5* ,0,1, . . . ,2, ~29!

the MAL can be formulated as

m i 11
id ~ r̃ i 11!1@ẼZ,Z2~ i 11!~k!2ẼZ,Z2~ i 11!~k50!#1m*

5m i
id~ r̃ i !1@ẼZ,Z2 i~k!2ẼZ,Z2 i~k50!#,

i 50,1, . . . ,Z21. ~30!

The system~30! has, obviously, to be solved iteratively sinc
the densitiesr̃ i depend on the solution. In Ref.@38# an
equivalent one-electron problem has been solved and cle
showed the effect that is expected in Eq.~30! as well: start-
ing with the isolated bound state valuebq(k50), the plasma
composition will yield a finitek. This, in turn, increases th
RZN and produces a new plasma composition with yet
other k. Potentially, this loop contains the point where t
plasma composition becomes unstable, which is a thermo
namical expression of the Mott transition discussed above
numerical example for this phenomenon can, within
framework of this work, however, not be given due to t
decisive fault of the neutral TF atoms being unstable and
to be left to subsequent work. In the MAL~30! the plasma
chemical potentialm* may contain further contributions du
e
st

les

a-
-

e

he
-

rly

-

y-
A
e

as

to exchange and correlation effects in the plasma@1,24#
which correspond, in a general sense, also to van der Wa
parametera. Thus, a picture of a van der Waals–like descr
tion of quantum plasmas emerges.

IV. CONCLUSION

Starting from a general functional of the free energy o
system of quantum electrons and classical nuclei, the che
cal picture has been shown to arise for a certain separa
ansatz for the electron density. This separation entails ne
sarily a mixing term that cannot, on physical grounds,
assigned toeither the plasmaor the bound state. In the pre
sented evaluation, this mixing term was treated in analog
the famous theory of Debye and Hu¨ckel @23#, which led to
the definition of a functional describing the bound state p
its electrostatically screening environment. Assuming furt
the kinetic energy of the bound electrons to be Thom
Fermi-like, a simple analysis was made possible. Unsurp
ingly, this showed the usual flaws of TF theory, even e
hanced up to the point of generally unstable neutral atom
number of features such as the delocalization mechanism
the difference with one-electron ionization theories cou
however, be discussed and illustrated. The bound state an
sis, then, provided a means to construct plasm
correspondent parameters for the chemical picture. In
spirit of the van der Waals EOS this produced, finally,
consistent description of energetical and structural corr
tions to ideal gas behavior.

Concerning the approximations made, it should be no
that Thomas-Fermi theory can not only be corrected for
well-known anomalies, but even turned into a surprising
accurate theory. Furthermore, the Debye-Hu¨ckel treatment of
the electrostatic screening can be improved as well. It ha
be stressed again that the assumptions of Eqs.~10!–~12! de-
stroy the self-consistency initially contained in Eq.~9!. With
a proper ionic structure theory inserted there instead of
Debye-Hückel ansatz, the presented framework can inde
be extended to long-range order phenomena. It has to
stated that the presupposed Debye-Hu¨ckel-like form of the
charge cloud around a bound state restricts the theory
nondegenerate, weakly interacting plasma. Despite the
strictive character of the approximations, it can be registe
as a general result of this work that for chemical spec
which can—due to the number of bound electrons—be
beled statistical, the interaction of the outer regions of
core electronic density with the plasma is of great imp
tance. Delocalization and a correspondent understandin
the Mott transition follow.

The aim of this paper was not to present a numerica
accurate theory but to highlight the general problem of c
sistency of structural and energetical changes when appl
the chemical picture to nonideal plasmas. In this respect
MAL ~30! presents the desired improvement in consisten
,
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